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1 The ApproachThis paper describes a compiler-based approach to the design of scalable concurrent pro-grams. The approach is motivated by the view that signi�cant advances in concurrentprogramming will not be achieved through compiler strategies that accept existing sequen-tial programs. The design and implementation of new concurrent programming strategiesand algorithms are our primary concerns; we seek simple, 
exible tools to support thisactivity.1.1 AbstractionThe programmer's most powerful tool is abstraction, the ability to neglect unimportantdetails until the appropriate time. Modern computer science has given us two basic meth-ods by which to use abstraction in program design: information hiding [34] and stepwisere�nement [41]. Both of these development methodologies attempt to separate concernsand place implementation details in unique components of a program. These strategiesimprove program clarity, localize change thus improving maintainability, and isolate sys-tem dependencies, thus improving portability. These concepts are the foundation uponwhich we strive to design large, correct, maintainable computer programs.These basic program development methodologies are in principle directly applicableto concurrent program design. However, this requires the ability to delay and to separatedesign decisions speci�c to concurrent programming. At the lowest level these decisionsconcern the techniques used to achieve communication and synchronization and the def-inition of architectural speci�cs, such as connection topology and number of computers.During the design process there are other concerns: program decomposition, the granu-larity of the components, the mapping of components to computers, and load-balancingstrategies. It should be possible to consider these concerns separately, isolate them inunique areas of a program, reason about alternatives, and reuse common strategies.Unfortunately, concurrent programming systems often force a premature commitmentto important design decisions or entangle unrelated aspects of a design. For example,designs expressed in terms of a small number of heavyweight processes necessarily encap-sulate decisions concerning granularity; these decisions are di�cult to change as a programscales to larger numbers of computers. An early commitment to a globally shared datastructure, as an means of communication between subprograms, may hinder subsequentpartitionings for execution on multicomputers. Many �rst-generation message-passingsystems equate a process with its location, immediately entangling the unrelated con-cepts of mapping, communication, topology, and number of computers.1.2 Basic ConceptsEarly commitments in program design can be avoided by adopting an abstract, architec-turally independent view of communication, synchronization, and concurrent execution.This architectural independence can be achieved by using a programming model based onfour simple concepts: monotonicity, concurrent composition, choice between alternatives,1



and separation of sequential code [19]. The notion of monotonicity provides an abstractmodel of communication and synchronization. Concurrent composition is used to specifyopportunities for parallel execution. Choice is used to select between alternative pro-gram actions. Finally, separation of sequential code simpli�es the use of state change andsequencing.These concepts are language independent and have been incorporated into a com-mercially available programming system, Strand [21]. In this paper, we work with asecond-generation system in which programs are expressed in a program composition no-tation (PCN) [8]. This notation provides a uniform treatment of concurrent composition,non-deterministic choice, and sequential programming. In addition, a simple syntax andthe use of recursively-de�ned data structures allows PCN programs to be representedconcisely as data structures. These data structures can in turn be manipulated by PCNprograms that implement source-to-source transformations.PCN programs may operate either concurrently, with communication and synchroniza-tion, or sequentially, by modifying memory. Yet they have the beautiful compositionalqualities and declarative semantics that are generally associated with only functional andlogic programs. Furthermore, PCN programs may incorporate pre-existing componentswritten in sequential languages such as C, C++ or Fortran, thus supporting migrationfrom sequential to concurrent programming.1.3 Programmer-de�ned AbstractionsAlthough concurrent programming introduces additional concerns that are not presentin sequential programming, these concerns are frequently application-independent. Forexample, when applying domain decomposition to problems of static structure, we mustaddress the issues of partitioning, communication, mapping, and granularity. However,these issues are for the most part associated with the technique of domain decomposi-tion rather than the problems to be decomposed. Similarly, although irregular computa-tions typically require load-balancing strategies, the strategy can usually be speci�ed inapplication-independent terms.This independence between problems and generic solution strategies can be exploitedby the use of domain-speci�c, but problem-independent, abstractions. These capture, ina reusable form, application-independent aspects of program design such as scalabilityconstraints, partitioning, mapping, and granularity. The implementation of an abstrac-tion is combined with problem-speci�c information to form a complete application. Inprevious work, we have explored these ideas in the context of mapping [39], self-schedulingcomputations [18], and tree reduction problems [20]. In this paper, we show how the speci-�cation and implementation of such abstractions can be incorporated into the compilationprocess.1.4 Compiler TechniquesWe seek techniques that permit e�cient implementation of concurrent programs, ex-pressed using the concepts described in previous sections, on a wide range of parallel2



architectures. These techniques must permit applications expressed using high-level ab-stractions to attain both the communication and the computational performance of theunderlying hardware. In particular, we wish to ensure that communication and synchro-nization overheads are directly transferred to the application, without multiple levels ofsystem overhead, thus allowing hardware message performance levels to be attained at theapplication level. Similarly, we seek to minimize the impact of synchronization overheadon sequential code, allowing sequential compiler performance to be achieved in sequentialcode fragments.The approach we have developed to meet these goals is based on the use of source-to-source transformation techniques. Successive transformations incrementally convertconcurrent programs expressed in terms of programmer-de�ned abstractions into low-levelexecutable parallel code. These transformations are applied by a simple programmabletransformation system that allows complex transformations to be speci�ed as concurrentprograms.As shown in Figure 1, the compilation pipeline involves four main stages. The �rststage transforms application programs expressed in terms of prede�ned or programmer-de�ned abstractions into PCN. The result of this process is a collection of equivalentprograms that implement the abstractions in terms of our four basic concepts (c.f. Sec-tion 1.2). The second stage applies a set of compilation transformations to the entire pro-gram produced by the �rst stage. These transformations incrementally transform PCNprograms toward a simple canonical form called Core PCN [22]. This canonical form isa high-level representation of a �ne-grain, concurrent programming model in which pro-cesses receive messages, make simple decisions, perform atomic actions to modify memory,and spawn additional processes.The third stage translates Core PCN programs into the instruction set of an abstract,�ne-grain, concurrent machine. This machine provides basic services such as processscheduling, message-passing communication, synchronization, data structure manipula-tion, and memory management. The abstract machine incorporates atomic operationsthat modify data structures and integrates the ability for concurrent programs to invokepre-existing sequential routines written in C, C++, and Fortran. These routines arecompiled with standard native-code compilers; the object code is linked into executableimages by a fourth linking and assembly stage.The abstract machine can be implemented in a variety of ways that trade o� e�ciencyand portability. A general-purpose run-time system, or emulator, has been produced thatexecutes the instruction set of the abstract machine directly [22]. This emulator is writ-ten in a portable subset of C that allows it to operate on a wide class of architectures; ittypically compiles to a binary image of less than 100 Kbytes. Currently, the emulator op-erates on Sun, Next, IBM, DEC, SGI, and HP workstations, on Intel iPSC 386/860/Deltaand Symult S2010 multicomputers, and on Sequent Symmetry and Sun shared-memorymultiprocessors. The resulting programs have impressive and predictable performancecharacteristics across a variety of architectures [10, 27].An alternative abstract machine implementation technique further compiles the en-coded abstract machine instructions to make use of speci�c architectural features. Forexample, most machines provide high-performance 
oating point accelerators. The Mosaic3



Application

PredefinedExisting

Fortran

C, C++,

Linking/Assemble

PCN

Abstract Program

Canonical Form

Core - PCN

Encoding

Object Code

Object Code

Networks iPSC 860 J-Machine Mosaic Portable Emulator

Abstract CodeNative Code

Compilation Transformations

New

Compilers

Standard

Abstractions Abstractions

Abstraction Removal

PCN + Abstractions

Figure 1: Compilation Strategy
4



architecture provides high-performance message-handling and �ne-grain process schedul-ing [36]. The J-machine also provides high performance variable and code-manipulationhardware [15]. All of these features may be used to replace unique components of theemulator design, providing high-performance, native-code versions of the system. Imple-mentations of this type are currently under construction.1.5 SummaryThe important characteristics of this approach are as follows. We employ a core pro-gramming notation based on the four concepts of monotonicity, concurrent composition,choice between alternatives, and separation of sequential code. This allows us to applystandard program development methodologies to cope with typical parallel computingproblems. Common abstractions can be isolated in a reusable form and implemented byusing source-to-source transformations. Both these transformations and the rest of thecompiler are implemented as concurrent programs. A highly portable run-time systemcan be used to execute programs on a wide variety of architectures. Alternatively, spe-cialized versions of the system can be developed for architectures of particular interest,by retargeting the �nal stage of the compiler.2 Related WorkThe bene�ts of an architecturally independent model of parallel computation have beenwidely recognized in the computer science community [29, 28, 25, 1, 7]. The notion ofmonotonicity is at the heart of several such programming models, notably concurrentlogic programming [11, 24], functional programming [28, 26, 9], and object-oriented pro-gramming [1]. Similarly, concurrent composition underlies such diverse approaches asCSP [29], concurrent logic programming, functional programming, and Unity [7]. Unfor-tunately, these models either do not support concurrent source-to-source transformationsor embed the basic ideas in complex language designs and programming paradigms thathave little to do with concurrent programming. Furthermore, few approaches are devel-oped to the point where they can be used to develop large-scale applications. We considerthe basic ideas to be su�cient in and of themselves and have worked to develop them asa practical basis for concurrent programming [19].The integration of sequential and concurrent programs has been the focus of a numberof other systems, notably large-grain data
ow and Linda [2, 6]. However, we insist upona clear separation of sequential and concurrent components in order to conveniently applysource-to-source transformation techniques and build programming abstractions. Previ-ous work on reusable abstractions in parallel program design include the Argonne monitormacros [4] and Schedule package [17], and Cole's algorithmic skeletons [14]. However, innone of these approaches is support for abstractions incorporated into a compiler.An alternative to our compiler techniques is to use run-time techniques such as higher-order functions [28, 31]. However, we prefer to use compile-timemethods based on source-to-source transformations so as to avoid run-time overheads and achieve our goals of5



e�cient communication, synchronization, and sequential execution. The use of \meta-programs" to specify program transformations is common in declarative programming [3,28, 38, 12, 5, 42]. Novel features of our approach include the integration of a pro-grammable transformer into the compilation pipeline, linguistic support for invocationof transformations, and the use of set-oriented abstractions for specifying transforma-tions. An alternative approach to the implementation of compile-time transformationuses meta-interpreters to specify transformations and partial evaluators to compile awaythe overhead of interpretation [35]. However, we �nd the complexity of this approachunnecessary and prefer to implement transformations directly.The abstract machine design that we employ builds on our previous work in run-time support for concurrent programming [19, 39]. Unlike our previous designs and otheruniprocessor systems [25, 30, 40], the PCN abstract machine emphasizes mutable datastructures and the integration of sequential procedures, written in languages such as C,C++, and Fortran, into concurrent programs. In addition, we have focused on minimalityin order to achieve a higher degree of portability and maintainability.3 Programming NotationsRecall from Section 1.2 that PCN provides a uniform and convenient notation for theuse of four programming concepts: monotonicity, concurrent composition, choice betweenalternatives, and separation of sequential code. The syntax of PCN is similar to that ofthe programming language C. Every procedure has the following form (k�0):
procedure name(Arg1,Arg2,: : :,Argk)
variable declarations;
compositionwhere a composition has the form f operator P1,P2,: : :,Pn g (n � 0) and operator de�neshow to execute the component procedures Pi. Each component Pi is an assignment,procedure call, or nested composition.An operator can be one of three basic operators or a programmer-de�ned operator.The basic operators signify concurrent execution (j j ), choice between alternatives ( ? ), orsequential execution ( ; ). Concurrent execution speci�es that the components P1, : : :, Pnare executed in any order or at the same time. Choice speci�es that only one componentis executed; the determination of which to execute is based on a simple Boolean condition.Sequencing speci�es that the components are executed in textual order. A programmer-de�ned operator is enclosed in angle brackets (e.g., <op>) and signi�es the use of anabstraction de�ned by some transformation. In this case, the appropriate transformationis applied to the procedure at compile time to yield a new procedure employing only thebasic operators.The following simple example illustrates the central PCN concurrent programmingconcepts and computes the minimum of four numbers.6



min4(a,b,c,d,result) =* 1 *=fj j minimum(a,b,min1), =* 2 *=
minimum(c,d,min2), =* 3 *=
minimum(min1,min2,result) =* 4 *=g

minimum(x,y,result) =* 5 *=f ? x >= y �> result = y, =* 6 *=
x <= y �> result = x =* 7 *=gThe min4 procedure is a concurrent composition of three components (1). The �rstcomputes the minimum of a and b, producing result min1 (2). The second computes theminimum of c and d, producing min2 (3). Finally, the third computes the minimum of

min1 and min2 to produce the �nal result (4). The minimum procedure uses choice tocompute the minimum of two numbers (5). If x >= y, then the result is y (6). If x<= y,then the result is x (7). If x and y are equal, then either choice gives the correct result.Monotonicity. PCN uses an architecturally independent method of specifying com-munication and synchronization: Components of a parallel composition may exchangeinformation via shared monotone variables. A monotone variable is initially unde�ned; itcan be assigned at most a single value and subsequently does not change. A procedurethat requires the value of a variable waits until the variable is de�ned.A shared monotone variable can be used to both communicate values and synchronizeactions. Notice how the �rst call to minimum (2) communicates the value min1 to thelast call (4) by variable sharing; similarly, the second call to minimum (3) communicatesthe value min2 to the last call (4).Consider the e�ect of the third minimum procedure executing �rst. In this case thevalues of min1 and min2 have not yet been produced, and so the procedure call must wait,or suspend, until both values are available. This simple data availability test provides apowerful mechanism for program synchronization.Monotonicity is valuable for two reasons. First, a program can be understood in isola-tion: choices made on the basis of monotone variables cannot change. This attribute easesthe understanding of concurrent programs and avoids errors caused by time-dependentinteractions. Second, the concept is trivial to implement e�ciently: it maps directly topointers within a single computer and to message passing between computers. Once avail-able, the value of a variable can be propagated throughout a parallel machine withoutconcern for consistency of copies [39]. Hence, programs can operate on distributed shareddata without locking protocols or complex synchronization schemes.Concurrent Execution. Procedure calls in concurrent compositions are able toexecute when their data is available; if data is available, a procedure is guaranteed toexecute eventually. The order in which procedures execute is not otherwise constrained.In particular, procedures can be executed in any order or in parallel.A consequence of monotonicity and concurrent execution is that it is not importantwhere and when procedures execute. Hence, decisions concerning partitioning, mapping,7



and granularity can be isolated from the rest of the program design process [8].Choice. Programs must inevitably choose between alternative actions; this choice isbased on the values of variables. We adopt a simple method of specifying program actionsthat makes such choices explicit and avoids overspeci�cation [16]. This is illustrated inthe minimum procedure. Informally, the two rules in this program specify two alternativeactions, each with an associated condition. The program can be understood in terms ofpre- and postconditions: if x>y holds, z=x will hold eventually, while x<y leads to thepostcondition z=y and x=y to the postcondition x=y=z.This intuitive understanding of the program is valid because of monotonicity andconcurrent execution. The monotonicity of x and y ensures that the preconditions arealso monotone. For example, once x�y, this condition holds forever and cannot be af-fected by actions performed by other programs. Concurrent execution ensures that oncea precondition is satis�ed, a valid postcondition will eventually be reached.Separation of Sequential Code. State change and sequencing are familiar conceptsfrom sequential programming. State change permits e�cient management of memoryvia destructive operations to storage locations; sequencing permits state changes to beorganized without the overhead of explicit synchronization operations on each access todata [23]. Although these concepts are valuable from a programming perspective, theyare dangerous in parallel programs if used in an unrestricted manner, because of thepossibility of race conditions. We employ these concepts under the constraint that sharedvariables are constant, or monotone, during concurrent execution. This constraint can beenforced by the programmer [21] or by the compiler using copying [8].In this context, a procedure expressed in a conventional language such as C, C++,or Fortran can be viewed as an atomic black box. This box simply computes an input{output relation. Hence, it can be characterized in terms of pre- and postconditions in thesame way as parallel program components. This integration of sequential languages intoa parallel programming context has a number of bene�ts. It achieves a clean separationof concerns between sequential and parallel programming, provides a familiar notation forsequential concepts, and enables existing sequential code to be reused in parallel programs.Mapping. Each invocation of minimum in the min4 procedure can be viewed as aseparate locus of control, or process. Annotations of the form @location(: : :) can be addedto the min4 procedure to specify how processes are mapped to computers, for example:
min4(a,b,c,d,result) =* 1 *=fj j minimum(a,b,min1), =* 2 *=

minimum(c,d,min2) @ location(: : :), =* 3 *=
minimum(min1,min2,result) @ location(: : :) =* 4 *=gIn the absence of the annotations, all calls to minimum operate at the same com-puter. This interleaving at a single computer allows overlapping of communication andcomputation. If the location annotations are present, they indicate that a process shouldexecute at an alternative computer within some virtual machine [33]. Virtual machinesplay two primary roles in program design: to reshape the physical machine to a form more8



convenient for programming, and to provide scalability by expanding and contracting thephysical machine to employ any arbitrary number of computers. Virtual machines mayalso be used to decompose a physical machine into a collection of submachines, each ofwhich may be allocated a di�erent computation. The combination of location annotationsand virtual machines allows concurrent programs to be written that recursively unravelover a parallel architecture [39].Programming Techniques. Extensive use of these programming ideas has con-vinced us that they are su�cient for all practical purposes. In particular, it has provedpossible to develop a small set of concurrent programming techniques that address the vastmajority of issues that arise in concurrent programming. These techniques support theorganization of arbitrary communication protocols, termination detection in distributedcomputations, the construction of distributed data structures, and the implementation ofatomic transactions [21, 8].4 Example Programming ProblemThroughout the rest of this paper, we will repeatedly return to a single example programto demonstrate our programming, compilation, and run-time techniques. This programis a simplied implementation of an application developed to simulate the atmospheric cir-culation over the globe [10]. The actual code comprises approximately 750 lines of PCNcode, 1,400 lines of Fortran, and 870 lines of C. It executes at 2.5 G
ops on the 528-computer Intel Delta and is portable across a wide range of architectures with predictableperformance characteristics [10]. The code is typical of other application codes devel-oped at Argonne National Laboratory and Caltech (e.g., [27]). These codes involve bothsubstantial computational components, requiring e�cient uniprocessor computation, andcomplex communication protocols, requiring e�cient communication and synchronization.The application involves the parallel implementation of a control volume method forsolving partial di�erential equations on a sphere. This method is developed by usingthe icosahedral-hexagonal discretization of a sphere shown in Figure 2(a). This providesgreater uniformity than the latitude-longitude grid commonly used for the same purpose.The icosahedral discretization can be structured as ten rhombi, each containing an N�Nmesh, and two polar points. This organization is illustrated in Figure 2(b).A parallel algorithm is obtained by the application of domain decomposition tech-niques. Each rhombus is decomposed into a number (say C2) of subdomains, giving atotal of 10C2 + 2 subdomains, two containing a single polar point and the others eachcontaining (N=C)2 points, where N2 is the total number of points in a rhombus. Thecontrol volume method computes the new value of each grid point at each time step as afunction of the previous value of that grid point and a small number of neighbors.Our implementation of this algorithm is separated into two parts: a reusable abstrac-tion and the application code. The abstraction encapsulates the concurrent programmingconcepts, de�ning spherical decomposition, communication structure, and mapping tocomputers. The application code implements the numerical method for a single subdo-main. An operator icosahedron(c) is used to combine the abstraction with the application9
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0 1 2 3Figure 3: Octahedral Mesh Structurecode, so as to form a complete program. This operator takes as arguments the names ofthe procedures to be executed at polar and nonpolar subdomains. It triggers applicationof a source-to-source transformation that generates the necessary concurrent program.For example, the following procedure composes the procedures controlvolume and poleto implement a control volume method on the icosahedral grid.
main(c)f <icosahedron(c)>

controlvolume(),
pole()gFor brevity, we work throughout this paper with the simpler octahedral grid illustratedin Figure 3. This grid has only four rhombi and no polar points. In addition, a �ve-point stencil is used throughout, meaning that each subdomain requires values from fourneighbors. This arti�cial problem is considerably more homogeneous than the icosahedralgrid, which has a mixed seven/six-point stencil with asymmetries at the poles. Thesecomplications lead to a more complex communication structure than considered here, butdo not change the basic structure of the code or the principles involved in its design.We show in Program 1 the application code developed for this problem. An octa-

hedron abstraction is used in a manner analogous to the icosahedron abstraction, andthe procedure controlvolume() is provided as the application-speci�c code to be executedin each subdomain. As a consequence of the �ve-point stencil, this procedure is invokedwith eight arguments, representing input and output streams to four neighboring subdo-mains. When �rst invoked, it allocates an array to hold the local subdomain, calls the Clanguage procedure c initialize to initialize this array, and then calls the procedure com-
pute to perform computation. The latter procedure is de�ned recursively. It repeatedlychecks for termination (step<MAX STEP), extracts and sends boundary values to itsfour neighbors, receives boundary values from four neighbors, and calls the C languageprocedure c update to compute a single step. The syntax no=[edge j no1] denotes thesending of a message edge on a communication stream no; no1 represents the remainderof the stream. The syntax ni ?= [n jni1] denotes the receiving of a message n on a stream
ni; ni1 denotes the remainder of the stream.11



#define SUBDOMAIN SIZE 3600
#define EDGE SIZE 16
#define MAX STEP 1000
#define NORTH 0
#define EAST 1
#define SOUTH 2
#define WEST 3

main(c) =* Application main program *=f <octahedron(c)> =* Name abstraction *=
controlvolume() =* Application-specific code *=g

controlvolume(ni,ei,so,wi,no,eo,so,wo) =* Application-specific code *=
double mesh[SUBDOMAIN SIZE]; =* Allocate mesh *=f ; c initialize(mesh), =* Initialize mesh *=

compute(0,mesh,ni,ei,si,wi,no,eo,so,wo) =* Execute numerical scheme *=g
compute(step,mesh,ni,ei,si,wi,no,eo,so,wo)
double mesh[], edge[EDGE SIZE];f ? step < MAX STEP �> =* Until done ... *=f ; c get edge(NORTH,edge,mesh), =* Get north edge *=

no=[edge j no1], =* Send edge north *=
c get edge(EAST, edge,mesh), =* Ditto for east *=
eo=[edge j eo1],
c get edge(SOUTH,edge,mesh), =* Ditto for south *=
so=[edge j so1],
c get edge(WEST, edge,mesh), =* Ditto for west *=
wo=[edge j wo1],f ? ni ?= [n j ni1], ei ?= [e j ei1], =* Recv from N and E*=

si ?= [s j si1], wi ?= [w j wi1] �> =* Recv from S and W*=f ; c update(mesh,n,e,s,w), =* Update mesh *=
step(step+1,mesh,ni1,ei1,si1,wi1,no1,eo1,so1,wo1)ggg,

default �> c dump(mesh) =* All done: dump *=g Program 1: Octahedral Application Code12



5 Transformation SystemRecall that the simple structure of PCN programs allows a concise representation as datastructures. These data structures can in turn be manipulated by PCN programs, allowingsource-to-source transformations to be speci�ed as concurrent programs that operate onconcurrent programs.5.1 De�ning TransformationsTo simplify the speci�cation of transformations, we de�ne an abstract data type thatimplements a set. The elements of the set may be programs or program components suchas blocks and procedure calls. We provide operations that transform each element of aset, split a set into subsets on the basis of a condition, compute a parallel pre�x operationover a set, and form the union of two sets.
transform(set,trans op,newset)
split(set,condition,set1,set2)
combine(set,combine op,result)
union(set1,set2,newset)Two additional operations support sets of programs. These operations compute uniqueprocedure and variable names.

unique id(set,newid)
unique var(set,newvar)When extended with the set data type, PCN becomes a powerful tool for implementingarbitrary source-to-source transformations. The basic operations listed above providebuilding blocks that can be used to implement more sophisticated operations. Librariesof such operations have been constructed and form the basis for the implementation ofboth the PCN compiler and abstractions such as icosahedron and octahedron. Forexample, Program 2 implements a useful operation map over that applies a speci�edtransformation (op) to every procedure call in a program component. This can be invokedin a call of the form

transform(set,map over(op),newset)to produce a newset in which the transformation op has been applied to every procedurecall in set. Program 2 uses choice composition and the match operator ?= to distinguishprogram components representing procedures, blocks, lists of blocks, implications, andcalls. The recursive calls to map over incrementally break down the program structureto isolate program calls. Finally, when a call is isolated, the supplied operator ‘op‘ isapplied at the end of the procedure.Program 3 shows an example transformation de�ned in terms of map over. Thissomewhat arti�cial example produces a newset, identical to an input set except thatall procedures, other than those named procname, have calls to oldname renamed to13



map over(op,item,newitem)f ? item ?= procedure(id,args,decls,block) �> =* Body of procedure *=fj j map over(op,block,newblock),
newitem = procedure(id,args,decls,newblock)g,

item ?= block(blockop,bs) �> =* Blocks in composition *=fj j map over(op,bs,newbs),
newitem = block(blockop,newbs)g,

item ?= [b|items] �> =* Blocks in list *=fj j map over(op,b,newb),
map over(op,items,newitems),
newitem = [newb|newitems]g,

item ?= f"�> ",guard,bodyg �> =* Body of implication *=fj j map over(op,body,newbody),
newitem = f"�> ",guard,newbodygg,

default �> =* Apply operator *=
‘op‘(item,newitem)g Program 2: Example Transformation Operation
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be calls to newname. Note the use of the primitive operations split, transform and
union. The split operation calls named to decompose the input set into a set1 containingprocedures with the name procname and another set2 containing all other procedures.The transform operation calls map over to apply the rename transformation to eachprogram call in set2, producing set3. Finally, the union operation is used to combine
set1 and set3 to form newset.

rename procedure calls(set,procname,oldname,newname,newset)fj j split(set,named(procname),set1,set2),
transform(set2,map over(rename(oldname,newname)),set3),
union(set1,set3,newset)g

named(name,object,result)f ? object ?= procedure(id,args,decls,block) �>f ? name == id �> result = ‘‘true’’,
name != id �> result = ‘‘false’’gg

rename(oldname,newname,oldcall,newcall)f ? oldcall ?= call(id,args,mapping) �>f ? id == oldname �> newcall = call(newname,args,mapping),
default �> newcall = oldcallg,

default �> newcall = oldcall =* Primitive (e.g., =) *=g Program 3: Example Program TransformationThe conciseness of expression permitted by this approach is evidenced by a recent pro-gramming experiment involving the remainder of the PCN compiler. This was originallydeveloped without the use of the transformation system. A new version written with thetransformation system implemented many additional optimizations and was neverthelessonly one third the size of the original code.5.2 Transforming the Octahedron ExampleWe illustrate the use of the transformation system by implementing the octahedron ab-straction. This implementation consists of two parts: an abstraction de�nition and map-ping de�nition. The abstraction de�nition is responsible for generating a process and15



communication structure required to represent the octahedral mesh. This yields a PCNprogram in which mapping decisions are speci�ed with respect to a virtual machine, bymeans of abstract annotations on procedure calls. The mapping de�nition deals withembedding the virtual machine into a particular physical machine. This separation ofconcerns allows physical machine dependencies to be isolated in a unique transformation.Typically, these dependencies can be encapsulated in a single procedure or library for agiven machine.5.2.1 Abstraction De�nitionThe abstraction de�nition is implemented by a transformation that combines a librarywith the application code given in Program 1. The library, given in Program 4, in-corporates solutions to three distinct problems: the partitioning of the data domain intodisjoint subdomains, the organization of communication between subdomains to exchangeboundary values, and the mapping of subdomains to processors in a parallel computer. Asdescribed in [10], this code is developed by a series of re�nement steps, each introducinga solution to one of these problems.The library code creates a process structure comprising 4c2 subdomain processes. Eachcall to rhombus from within sphere creates c2 processes by calling the row procedure ctimes, once per rhombus row; each call to row creates c subdomain processes.Monotone variables are used to de�ne the communication structure required for theuse of a �ve-point stencil. This structure, illustrated in Figure 4, allocates each subdo-main communication streams to four neighbors. The procedure sphere establishes theinitial connections between the various rhombi, as shown in Figure 4 (a). These initialconnections are used to establish connections between the meshes created within eachrhombus. Each rhombus produces a list of communication streams on its north (nn) andeast (ee) sides and consumes a list of streams on its south (ss) and west (ww) sides;these streams are used for communication between meshes in di�erent rhombi, as in Fig-ure 4 (b). Additional streams are created within the rhombus and row procedures forcommunication between subdomains within the same rhombus. Notice that the rhombusprocedure eventually reduces to a concurrent composition of c2 start subdomain pro-cesses, at which point each subdomain has four communication streams to its north, east,south, and west neighbors (n, e, s, w). Finally, each of these neighboring streams isconverted into a pair of input/output streams, as in Figure 4 (c).Transformation. The octahedron abstraction requires only a trivial transformation.Recall the following block from Program 1 that uses the octahedron operator:f <octahedron(c)>
controlvolume()gThis block is transformed into a call sphere(c) that invokes the sphere procedure ofthe library in Program 4. In addition, the call to the subdomain procedure, in the library,is renamed to call the subdomain procedure supplied by the abstraction i.e. controlvol-

umn. This transformation can be speci�ed by the following procedure, that is applied16
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sphere(c)fj j rhombus(0,c,c,n0,e0,e3,n3), =* Rhombus 0 *=
rhombus(1,c,c,n1,e1,e0,n0), =* Rhombus 1 *=
rhombus(2,c,c,n2,e2,e1,n1), =* Rhombus 2 *=
rhombus(3,c,c,n3,e3,e2,n2) =* Rhombus 3 *=g

rhombus(r,i,j,nn,ee,ss,ww) =* Create a rhombus *=f ? i > 0 �>fj j ee = [e j ee1], =* Produce E stream *=
ww ?= [wa j ww1a] �> =* Consume W *=fj j ww1 = ww1a, w = wag
row(j,r,i,j,nn,ssm,w,e), =* Create a row *=
rhombus(r,i�1,j,ssm,ee1,ss,ww1) =* Recurse for more rows *=g,

i == 0 �> fj j nn = ss, ee = []g =* Done with rhombus *=g
row(c,r,i,j,nn,ss,w,e) =* Create a single row *=f ? j > 0 �>fj j nn = [n j nn1], =* Produce N stream *=

ss ?= [sa j ss1a] �> =* Consume S *=fj j ss1 = ss1a, s = sag
map(c,r,i,j,locn), =* Compute mapping location *=
start subdomain(n,em,s,w) @ locn, =* Map single subdomain *=
row(c,r,i,j�1,nn1,ss1,em,e) =* Recurse: more subdomains *=g,

j == 0 �> fj j e = w, nn = []g =* Done with row *=g
start subdomain(n,e,s,w)fj j n = fno,nig, e = feo,eig, =* Make 2 streams *=f ? s ?= fsi,sog, w ?= fwi,wog �> =* Get 2 streams *=

subdomain(ni,ei,so,wi,no,eo,so,wo)gg Program 4: Octahedron Abstraction: Library Code18



by the compiler to any program block containing the operator octahedron(c); it yields a
newblock and a set of new procedures.

octahedron(c,block,newblock,set)f ? block ?= block(octahedron(c),[proc]) �>fj j load(‘‘octahedron library’’,set1), =* 1 *=
transform(set1,map over(rename(‘‘subdomain’’,proc)),set), =* 2 *=
newblock = call(‘‘sphere’’,[c],[]) =* 3 *=ggNotice the reuse of the operations map over and rename speci�ed in Section 5.1. Theprimitive operation load is used to load the octahedron abstraction library into a newset, set1 (1). Then, the map over and rename operations are used to rename all callsto ‘‘subdomain’’ (2). Finally, the original block is transformed to be a simple call to theprocedure sphere (3).5.2.2 Mapping De�nitionThe library code shown in Program 4 uses the notation @locn to signify process mapping.The mapping of the octahedral process structure to a parallel computer is encapsulated inthe procedure map, which is called to compute the location of each subdomain process.One simple approach places one subdomain on each processor; this provides scalabilityat the expense of some non-nearest-neighbor communication. This may be speci�ed asfollows.

map(c,r,i,j,locn)fj j locn = r*c*c + i*c + j gAn alternative approach is to fold the octahedral mesh so as to ensure nearest-neighborcommunications [37]. In this approach, each processor is allocated four subdomains.This constrains scalability, but is useful when remote communication is expensive. Thealternative can be implemented simply by rede�ning the map procedure. If the programis to execute on a c�c mesh, with processors numbered 0 to c2-1, then the new de�nitionis as follows.
map(c,r,i,j,locn)f ? r%2 == 1 �> locn = i*c + j,

r%2 == 0 �> locn = (c-j)*c - (i+1)g5.2.3 Developing an Alternative Mapping StrategyThe library and transformation presented in the preceding section succeed in isolatingmapping decisions in a separate map procedure. However, many details of the map-ping remain in the abstraction library, making it di�cult to reuse this library in othercircumstances or to apply mappings with a di�erent structure.19



To simplify the exploration of alternative mapping strategies, we have developed toolsthat allow mappings to be speci�ed with respect to a virtual machine. Recall that avirtual machine is an abstract architecture that is convenient for solving a programmingproblem. This approach can be generalized to allow the composition of multiple virtualmachines in a hierarchy. This allows elements of the virtual machine structure to beisolated for reuse as shown in Program 5.
sphere(c)fj j rhombus(c,c,n0,e0,e3,n3) @ mesh(0), =* Map mesh 0 *=

rhombus(c,c,n1,e1,e0,n0) @ mesh(1), =* Map mesh 1 *=
rhombus(c,c,n2,e2,e1,n1) @ mesh(2), =* Map mesh 2 *=
rhombus(c,c,n3,e3,e2,n2) @ mesh(3) =* Map mesh 3 *=g

rhombus(i,j,nn,ee,ss,ww)f ? i > 0 �>fj j : : :,
row(j,nn,ssm,w,e),
rhombus(i�1,j,ssm,ee1,ss,ww1) @ south =* Map south *=g,

i == 0 �> fj j nn = ss, ee = []gg
row(j,nn,ss,w,e)f ? j > 0 �>fj j : : :,

mesh(n,em,s,w),
row(j�1,nn1,ss1,em,e) @ east =* Map east *=g,

j == 0 �> fj j e = w, nn = []gg Program 5: Virtual Machine MappingFor example, an octahedral virtual machine can be constructed by composing fourmesh submachines, with each submachine containing c2 virtual processors. The octahe-dral virtual machine supports a mapping annotation @mesh(n) that allow us to addressthe individual mesh machines. Within a mesh virtual machine, we address individualvirtual processors using mapping annotations @south, @east, etc., that specify relativelocations. This approach simpli�es the speci�cation of mapping within an application.For example, by combining the octahedral and mesh virtual machines, we may specify20



the mapping as shown in Program 5.Mapping constructs such as @mesh(i) and @east are themselves abstractions im-plemented by a combination of source transformations and mapping libraries. We havedeveloped libraries of transformations that allow new virtual machines to be de�ned bythe programmer and combined hierarchically to �t complex application and machinestructures.6 Compilation TransformationsIn Section 5, we showed how the transformation system is used to convert programsexpressed in terms of abstractions into PCN. We now move to the techniques used tocompile PCN programs into executable code. The same transformation system is nowused to specify compilation transformations that are used to compile PCN programs.Hence, the entire PCN compiler is a concurrent program that may be executed on multiplecomputers.The compilation transformations incrementally transform programs into a canonicalform that can be directly encoded into machine instructions. We term this canonicalform Core PCN since it re
ects the core ideas of the underlying implementation strat-egy, namely, �ne-grain concurrent processes that communicate and synchronize throughmessage passing [22]. These processes execute simple atomic actions that may modifymemory.6.1 Core PCNAll Core-PCN programs have the following form (ki, li, n � 0):
program name(Args)
declarationsf ? G1 �>f ; A1,: : :,Ak1 , fj j p1(: : :),: : :, pl1(: : :) gg,

:
Gn �>f ; A1,: : :Akn , fj j p1(: : :),: : :, pln(: : :) gg,
default �>f ; A1,: : :Akn+1 , fj j p1(: : :),: : :, pln+1 (: : :) gggIn this form, Gi is a PCN guard action, Ai is an atomic action, and pi is a processinvocation. An atomic action is either an assignment or a call to a sequential procedurewritten in C, C++, or Fortran. Notice that this canonical form contains neither nestedcomposition nor sequential compositions of PCN procedures. Core PCN programs simplyreceive messages in the guard, modify local state and/or spawn more processes; processsynchronization occurs only in the guard components of a program.21



The operational semantic of a Core PCN program consists of a subset of the semanticfor PCN programs [8]; it is identical to that of Strand [21] except that atomic actionsmay modify data structures. If any guard Gi is true, the associated atomic actions areexecuted, and concurrent processes are then spawned. If all guards are false, then thedefault action is executed. Guard evaluation completes only when su�cient informationis available for one of these conditions to be satis�ed.6.2 The TransformationsPCN programs are transformed into Core PCN by a pipeline of �ve principal transfor-mations. Each transformation is developed using the transformation system described inSection 5, and hence can be speci�ed, understood, and maintained independently. Thetransformations are described in the sections that follow. Although these descriptionsignore numerous optimizations that are performed in the PCN compiler, they convey thebasic structure of the compiler.Expression Removal. This transformation ensures that concurrent processes maybe spawned immediately without waiting for their arguments to be evaluated. It extractsexpressions from various locations in a program text and creates assignment statementsto evaluate the original expressions. In the following examples, the original code is shownon the left and the transformed code on the right.
p(: : :) p(: : :)fj j : fj j :

f(: : :,X+Y,: : :) =) fj j NewVariable=X+Y,
: f(: : :,NewVariable,: : :)g g,

:gExample Expression RemovalAtomic Action Generation. This transformation moves synchronization operationsout of sequential and parallel blocks and into guards. This allows separate optimizationof synchronization operations when compiling choice blocks. It also simpli�es compilationof arithmetic, memory operations, and sequential subroutines. In particular, they can becompiled directly to sequential code so as to attain the performance of the underlyingmachine language.The transformation considers statements such as V=M+V which contain monotonevariables for which synchronization is required. For example, if M is monotone, evaluationmust delay until M has a value. The transformation achieves this behavior by generatinga choice block that performs a data check on the variable M. This ensures that theassignment does not execute until M has a value, at which time it executes as an atomicaction and terminates. 22



Calls to sequential subroutines expressed in C, C++, or Fortran are handled in asimilar manner. By ensuring that their data is available prior to subroutine entry, theseroutines may be treated as atomic actions that terminate immediately.
p(: : :,M,: : :) p(: : :,M,: : :)
int V; int V;f ; V=M+V, f ? data(M) �>

C program(: : :,M,V,: : :) =) f ; V=M+V,g C program(: : :,M,V,: : :)ggExample Atomic Action GenerationNested Choice Removal. This transformation allows the underlying abstract ma-chine to use a trivial process suspension mechanism that need not deal with suspension inthe middle of procedure execution: Suspension may occur only during guard evaluation.A nested choice block is replaced with a call to a new procedure. This new procedurecontains the original nested block. Its arguments are the variables shared by the originalblock and the enclosing procedure.
p(: : :) p(: : :)f ? : f ? :f ? x > y �> f(: : :), =) p.1(x,y,: : :)

x < y �> g(: : :) :g g
:g p.1(x,y,: : :)f ? x > y �> f(: : :),

x < y �> g(: : :)gExample Choice RemovalSequencing Removal. This transformation allows all PCN procedures to be exe-cuted as �ne-grain concurrent processes. The essence of the idea is to translate sequentialblocks into concurrent blocks with some added synchronization. Sequential semantics areretained by passing a token from one concurrent process to another in the order speci�edby the original program sequencing. Receipt of this token enables process execution.The transformation achieves this behavior by transforming all sequential and concur-rent programs into equivalent programs that wait to be enabled (e.g., data(L)), execute,and then forward the token through an appropriate argument (e.g., R).23



p(: : :) p(: : :,L,R)f ; f(: : :), f ? data(L) �>
g(: : :), =) fj j f(: : :,L,M1),
h(: : :) g(: : :,M1,M2),g h(: : :,M2,R)ggExample Sequencing RemovalCanonical Form Generation. This transformation translates procedures generatedby the preceding transformations into the Core PCN canonical form. This involves ac-tivities such as combining nested parallel blocks, ensuring that every choice compositionhas a default implication, and wrapping single procedure calls with parallel composition.

p(: : :) p(: : :)fj j fj j f1(: : :), f2(: : :) g, fj j f1(: : :),
g(: : :), =) f2(: : :),fj j h1(: : :), h2(: : :) g g(: : :),g h1(: : :),

h2(: : :)gExample Canonical Form Generation6.3 Compiling the Octahedral ExampleWe illustrate the application of the compilation transformations by showing the codeproduced when they are applied to the compute procedure (Program 1). Notice thatthis procedure contains both sequential operators and nested choice blocks. The CorePCN generated for this procedure is presented in Program 6. The following aspects ofthe transformed procedure are important:� The auxiliary procedure compute.1 is introduced to replace the nested choice block.Notice that the variables used by the nested choice block are passed to compute.1as arguments and that an argument declaration for the mesh array is inserted.� A synchronization variable DE is introduced, to permit other programs to detecttermination of compute. This variable is de�ned only after execution of computeis complete.� Synchronization operations (data(nb), etc.) are inserted in compute.1 to ensurethat calls to the sequential procedure c update do not suspend.24



compute(step,mesh,ni,ei,si,wi,no,eo,so,wo, DE)
double mesh[], edge[EDGE SIZE];f ? step < MAX STEP �>f ; c get edge(NORTH,edge,mesh), no=[edge j no1],

c get edge(EAST, edge,mesh), eo=[edge j eo1],
c get edge(SOUTH,edge,mesh), so=[edge j so1],
c get edge(WEST, edge,mesh), wo=[edge j wo1],fj j compute.1(step,mesh,ni,ei,si,wi,no1,eo1,so1,wo1, DE) gg,

default �> f ; c dump(mesh), DE = [] gg
compute.1(step,mesh,ni,ei,si,wi,no1,eo1,so1,wo1, DE)
double mesh[];f ? ni ?= [n j ni1], ei ?= [e j ei1], si ?= [s j si1], wi ?= [w j wi1],

data(n), data(e), data(s), data(w) �>f ; c update(mesh,n,e,s,w),fj j step(step+1,mesh,ni1,ei1,si1,wi1,no1,eo1,so1,wo1, DE) gg,
default �> f ; DE = []gg Program 6: Core PCN Octahedral Code
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writeFigure 5: Single Computer Function7 Run-Time TechniquesWe conclude our discussion of the techniques used to map high-level concurrent programsonto parallel computers by describing the techniques used to execute the Core PCN codeproduced by the compiler.Recall from Section 6.1 that Core PCN programs simply receivemessages, modify stateand spawn other processes. This basic model of computation is realized by a �ne grain,concurrent, abstract machine. This machine comprises a number of computers connectedvia an interconnection network. Each computer is organized as shown in Figure 5 and isresponsible for process scheduling, intercomputer communication, and memory manage-ment. The machine also incorporates facilities for performance evaluation [19, 32].The abstract machine executes sequences of simple instructions that encode processcontrol, guard evaluation, and data structure manipulation. In all, there are 33 instruc-tions whose arguments are typically registers (Ri), program names (P), the number ofarguments in a process (N), etc. Each instruction corresponds to a few physical ma-chine instructions. Memory management and communication functions are used by theinstructions but are not encoded directly. 26



7.1 Process ControlThe abstract machine maintains an active queue containing runnable processes. Each pro-cess consists of a set of arguments and the location of the associated code. Conceptually,the basic execution algorithm is to repeatedly remove a current process from the activequeue, load its arguments into machine registers, and execute the associated Core PCNprocedure. For example, consider a process p(4,3,2,1) executing the following code:
p(a,b,c,d)f ? a > b �>fj j q(a,b,d),

r(b,c,d)ggWhen process p is scheduled, its arguments are loaded into machine registers R0 to
R3. Since 4>3, the parallel composition is executed. One legitimate execution strategy isto spawn processes q and r, place them at the end of the active queue, terminate process
p, and perform a context switch to execute another process from the queue. This strategyis simple but incurs considerable overhead. Hence, we use an alternative strategy: Thecurrent process proceeds directly to execute process q; only process r is spawned andplaced into the active queue. This strategy is a form of tail recursion optimization, whichcan be applied as shown here even when recursion is not involved. It permits the e�ciencyof iteration to be achieved in many concurrent programs expressed in recursive form.Notice that the arguments a and b for process q are already in the correct registers
(R0,R1) for execution of process q. Hence, in order to execute process q, we use asingle instruction to transfer the variable d to register R2. This optimization can bereapplied in the execution of process q. We limit the number of consecutive applicationsof the optimization, to guarantee that every process will eventually execute. After a �xednumber of iterations, called a timeslice, a context switch is forced to occur. Table 1summarizes the instructions for process scheduling and control.Recall that PCN programs can call sequential procedures written in C, C++, orFortran. The compilation transformations ensure that these calls occur as atomic actionsas described in Section 6.2. The calls are encoded by using the call foreign instruction.Arguments are always passed to such procedures using call by reference. This can beachieved e�ciently because the PCN implementation records information about datatypes and data availability using tagged pointers. Hence, basic data types such as scalarsand arrays can be represented in the same way as in sequential languages. Informationcan be passed in calls simply by stripping the tag from a pointer; this is achieved by the
put foreign instruction.7.2 Guard EvaluationFigure 6 outlines the structure of the compiled code for a Core PCN procedure (Sec-tion 6.1). All of the guards for a single procedure are encoded to form a discrimination27



Table 1: Process Scheduling and ControlInstruction Commentfork P N create an active processrecurse P N execute a tail recursive callhalt terminate the current processdefault N decide whether to suspend the current processtry L if the following guard fails, go to Lcopy R1 R2 copy from one register to an argument registerput value R place a value in a process argumentput foreign R prepare a foreign procedure argumentcall foreign N Address invoke a foreign procedurerun R1 R2 invoke a procedure dynamically
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Table 2: Guard EvaluationInstruction Commentget tuple R1 A R2 decompose an incoming messageequal R1 R2 compare for equalitynot equal R1 R2 compare for inequalitytype R1 Tag check the type of a valuele R1 R2 less than or equallt R1 R2 less thandata R wait for datanetwork. This network simply decides which implication body to execute. There are threepossible outcomes to guard evaluation. If any guard succeeds, then an associated implica-tion body is executed. This involves immediate execution of the atomic actions, spawningof concurrent processes, and continued execution of the current process. If there are noprocedure calls in the implication body, the current process terminates and a contextswitch occurs. If all guards fail, then the body associated with the default implicationis executed. Finally, there may not be su�cient information available for any guard tosucceed. In this case, the current process must be suspended. If suspension occurs, theprocedure requires the value of one or more monotone variables. If only one variable isneeded, then the process is attached to a queue of suspended processes associated withthat variable. If multiple variables are required, then the process is placed in a globalqueue that is rescheduled periodically.Table 2 summarizes the abstract machine instructions used to encode guard evaluation.These are the only abstract machine instructions that involve process synchronization.7.3 Data Structure Manipulation.The abstract machine provides a variety of instructions to manipulate arrays and mono-tone variables. Machine instructions are available to build these variables, transfer thembetween registers, perform arithmetic, deposit them in processes, etc. Table 3 summarizesthese instructions.7.4 CommunicationCommunication is necessary when processes located on di�erent computers share a mono-tone variable. The algorithms used to implement communication follow from the repre-sentation chosen for monotone variables in a parallel computer network. Each variableis located at a single computer; all other instances of the variable are represented byintercomputer pointers termed remote references [39]. Intercomputer communication isnecessary whenever a guard or assignment operation encounters a remote reference. Thiscommunication is achieved by using three message types: read, write, and value.29



Table 3: Data Structure Manipulation and ArithmeticInstruction Commentbuild static R Type Size build a statically sized arraybuild dynamic Type R1 R2 build a dynamically sized arraybuild monotone R build a monotone variableput data R Type Size Value place a literal in a registerde�ne R1 R2 de�ne monotone variable (send a message)get arg R1 R2 R3 extract an argument from a structureget element R1 R2 R3 get an element of an arrayput element R1 R2 R3 put an element into an arraycopy mut R1 R2 snapshot a variable for communicationcoerce mut R1 R2 change a data-typelength R1 R2 extract the length of a data structureadd R1 R2 R3 additionsub R1 R2 R3 subtractionmul R1 R2 R3 multiplicationdiv R1 R2 R3 divisionmod R1 R2 R3 modulusA readmessage is issued to request the value of a monotone variable located at a remotecomputer. It is generated when a guard test encounters a remote reference. Recall thatthe compilation transformations place all synchronization operations in guards. Hence,read messages may be issued only during guard evaluation. A computer receiving a readmessage responds with a value message when the value for the requested variable becomesavailable.The write message is issued when an assignment operation is applied to a monotonevariable represented by a remote reference. The message carries the value that is to beassigned. A computer receiving such a request completes the assignment at the speci�edlocation.Messages are received and serviced by a computer whenever a context switch occurs.Hence, the use of a timeslice to force periodic context switches also has the e�ect ofallowing overlapping of computation and communication.7.5 Memory ManagementRecall that PCN provides recursively de�ned data structures and dynamic memory al-location. Although it is possible to write programs that execute without consumingmemory, a garbage collection algorithm is required in the general case. This algorithmreclaims memory occupied by data structures that are no longer accessible by any ac-tive process [13]. The current PCN implementation uses a simple asynchronous garbagecollection technique for memory management. This technique allows computers to col-30



lect independently by maintaining tables of remote references. These tables decouple theaddress spaces on di�erent computers [22].We are currently investigating programming and compiler techniques that will allowprograms to be re�ned so as to avoid the need for garbage collection. This will allow theuse of simpler memory management techniques.7.6 Encoding the Octahedron ExampleWe conclude this description of the run-time techniques by encoding two fragments ofthe octahedral application. For clarity, these encodings do not take advantage of allopportunities for optimization. Program 7 encodes a fragment of the Core PCN computeprocedure given in Program 6. This encoding demonstrates communication of an array ona stream, calling of sequential C code, and tail recursion optimization. In Program 8, weencode a fragment of the sphere procedure from Program 4. This encoding demonstratesthe coupling of process spawning and tail recursion optimization.8 ConclusionWe have described programming and compiler techniques that support the use of ab-straction in concurrent program design. These techniques allow programmers to specifyapplications at a high level using reusable domain-speci�c abstractions. These abstrac-tions can encapsulate design decisions concerned with decomposition, communication,mapping, load-balancing, scheduling, granularity control, and details of the physical ma-chine.These programming concepts are supported through compiler techniques that allowprograms expressed in terms of abstractions to be compiled into e�cient code for a va-riety of parallel architectures. Compilation proceeds in three primary stages. The �rststage applies transformations to programs expressed in terms of a variety of abstractions.This stage yields programs in a simple compositional programming notation that imple-ment abstractions through communication and synchronization. The second stage appliesgeneric compilation transformations to generate programs in a machine-independent corenotation. The third stage compiles this core notation to the instruction set of a concurrent,�ne-grain, abstract machine. This machine can be implemented with run-time techniquesbased on the use of a portable emulator. Alternatively, the compilation pipeline can beextended to apply machine-speci�c transformations that generate native code for a partic-ular architecture. These transformations can make use of speci�c machine features suchas �ne-grain process support or variable handling hardware.The compiler is implemented as a small driver program that applies the abstraction,compilation, and machine-speci�c transformations. The transformations themselves arespeci�ed in a high-level program transformation notation. This notation is simply PCNaugmented with operations for the manipulation of sets of programs. These operationsprovide building blocks that are used to construct libraries of reusable transformations.All of the transformation, compilation and run-time system techniques described in31



compute(step,mesh,ni,ei,si,wi,no,eo,so,wo, DE)
double mesh[], edge[16];f ? step < 1000 �>f ; c get edge(0,edge,mesh), no=[edge j no1],: : :,

compute.1(step,mesh,ni,ei,si,wi,no1,eo1,so1,wo1, DE)g,
default �> f ; c dump mesh(mesh), DE = [] gg

compute/11: =* R0 = step, R1 = mesh, R2-9 = ni-wo, R10 = DE *=
build static double 16 11 =* R11 = edge *=
try L0

put data 12 1000 =* R12 = integer(1000) *=
lt 0 12 =* step < 1000 *=
put data 12 0 =* R12 = integer(0) *=
put foreign 12 =* 0 *=
put foreign 11 =* edge *=
put foreign 1 =* mesh *=
call foreign c get edge 3 =* Call C procedure *=
build static int 1 12 =* R12 = mutable integer *=
length 11 12 =* R12 = length(edge) *=
build dynamic double 12 13 =* R13 = mutable *=
copy mut 11 13 =* copy edge to message *=
build monotone 14 =* R14 = no1 *=
build static tuple 2 15 =* R15 = [head | tail] *=

put value 13 =* head = message *=
put value 14 =* tail = no1 *=

define 6 15 =* send message on "no" *=: : :
copy 14 6 =* no1 *=
copy 16 7 =* eo1 *=
copy 17 8 =* so1 *=
copy 18 9 =* wo1 *=
recurse compute.1/11 =* Branch to compute.1 *=

L0: default 10 =* Default implication *=
put foreign 1 =* mesh *=
call foreign c dump mesh 1 =* Call C procedure *=
build static tuple 0 11 =* R11 = [] *=
define 10 11 =* R10 = [] *=
halt =* Terminate and context switch *=Program 7: Encoding the compute Procedure32



sphere(c)fj j rhombus(c,c,n0,e0,e3,n3), =* Call 1 *=: : :
rhombus(c,c,n2,e2,e1,n1) =* Call 3 *=
rhombus(c,c,n3,e3,e2,n2) =* Call 4 *=g

sphere/1: =* R0 = c *=
build monotone 1 =* R1 = n0 *=
build monotone 2 =* R2 = n3 *=
build monotone 3 =* R3 = e3 *=
build monotone 4 =* R4 = e2 *=
build monotone 5 =* R5 = n2 *=
build monotone 6 =* R6 = n1 *=
build monotone 7 =* R7 = e1 *=
build monotone 8 =* R8 = e0 *=
fork rhombus/6 =* Call 1 *=

put value 0 =* c *=
put value 0 =* c *=
put value 1 =* n0 *=
put value 8 =* e0 *=
put value 3 =* e3 *=
put value 2 =* n3 *=

fork rhombus/6 =* Call 2 *=: : : =* Arguments for Call 2 *=
fork rhombus/6 =* Call 3 *=

put value 0 =* c *=
put value 0 =* c *=
put value 5 =* n2 *=
put value 4 =* e2 *=
put value 7 =* e1 *=
put value 6 =* n1 *=

copy 0 1 =* c *=
recurse rhombus/6 =* Call 4 *=Program 8: Encoding the sphere Procedure33



this paper have been implemented and are incorporated in a public-domain program de-velopment toolkit. The toolkit operates on a wide variety of networked workstations,multicomputers and shared-memory multiprocessors. It includes tools for de�ning pro-gram transformations, compiling concurrent programs, checking programs, debugging,performance analysis, and program animation. The toolkit has been used to design andimplement substantial applications in several domains, including climate modeling and
uid dynamics [10, 27]. These programs use abstractions to coordinate the execution ofthousands of lines of pre-existing C and Fortran code. Experimental studies show thatthe codes operate with predictable and impressive performance on a wide range of parallelcomputers.The toolkit can be obtained by anonymous FTP. Both the toolkit and on-line docu-mentation are located in directory pub/pcn at info.mcs.anl.gov and in directory pcn at
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